Math Logic: Model Theory \& Computability
Lecture 11

Elementarity.
We kow that for restruchres $A \leq B$, we have for each extencled r-forfular $\varphi(\vec{x})$ and $\vec{a} \in A^{|\vec{x}|}$,
(a) it φ is quantifier frece, then $\underline{A} \vDash \varphi(\vec{a})$ iff $\underline{B} \vDash \varphi(\vec{a})$.
(b) if φ is universal, hen $B \vDash \varphi(\vec{a})$ implies $A \vDash \varphi(\vec{a})$.
(c) if φ is existensial, then $\underset{A}{ } \vDash \varphi(\vec{a})$ implies $B \vDash \varphi(\vec{a})$.

For genecal focuminas, the it and only if doesn't hold for an arbitary substinctur A of B.

Det. let A, B be σ-stcuchures.

- A a function $h: A \rightarrow B$ is called an elementaz embeddisg if for ench extended σ-formala $\varphi(\vec{x})$ aul $\vec{a} \in A^{|\vec{x}|}$, we have $\underline{A} \vDash \varphi(\vec{a}) \quad$ iff $\quad \underline{B} \vDash \varphi(h(\vec{a}))$.
We denote his hs $h: \underline{A} c_{e} B$.
Remarte. An elementang enhedding is in particatar an embedding beex ter injectivity if $h\left(a_{0}\right)=h\left(a_{1}\right)$ then $B F\left(x_{0}=x_{1}\right)\left(h\left(a_{0}\right), h\left(a_{1}\right)\right)$ so $A f\left(x_{0}=x_{1}\right)\left(a_{0}, a_{1}\right)$, i.e. $a_{0}=a_{1}$. Similarly for any m(ation $R \in R(f)$, if $\underline{B} \vDash R(h(\vec{a}))$, then $\mathbb{A} \neq R(\vec{a})$. Same be tuaction rgabols $f \in F_{u} \&(\sigma)$.
- We say ht A elewentarily enbeds into $\frac{B}{}$ if there is an eleventary cenbedding $h: \underline{A} C_{e} B$, and this is clabted b, $\underline{A} c_{e} B$.
- A sabstracfure A of B is called elenentary if the iaclasionmap $A \rightarrow B$ is an eleweatany enmbedding, in othe words for cach exleactal
$a \mapsto a$
∇－formals $\varphi(\vec{x})$ and $\vec{a} \in A^{|\vec{x}|}$ ，we have
$\underline{A} \vDash \varphi(\vec{a})$ lift $B \neq \varphi(\vec{a})$ ．
We denote this $A \approx B$ ．
（Conater）Examples．（a）$(\mathbb{N},<) \subseteq(\mathbb{Z},<)$ hut not elenectary because
the sentence $\forall x \exists y(y<x)$ is tine in $(\mathbb{Z},<)$ bat false in $(\mathbb{N},<)$ ．
（b）$(\mathbb{N}, 0,+) \subseteq(\mathbb{Z}, 0,+)$ but not elementary be ese $\forall x \exists y(x+y=0)$ balds in $(2,0, t)$ hat failes in $(\mathbb{N}, 0, t)$ ，in other roods $(2,0, t)$ is a group but $(\mathbb{N}, 0, t)$ isn＇t．
（c）Unalike（a），$(\mathbb{Q},<) \nleftarrow(\mathbb{R},<)$ and the prot is outlined in
（d）It is clear that if $\underline{A} \leqslant \underline{B}$ then in particular $A \equiv B$ and in examples（a）and（b）cully 三 tailed and hence $\mathfrak{\text { angled．}}$ We maw give an example of $\underline{A} \subseteq \underline{B}$ sit．$\underline{A} \equiv \underline{B}$ lent A 天的 Ir fact，our $A \subseteq B$ will actually be iroworphic．
let $\sigma:=\sigma_{\text {yeah }}:=(E)$ and let A and B be the following graphs：

B
Then $h: A \widetilde{B}$ so in particular

$$
\left\{\begin{array}{l}
(2 k)^{\prime} \mapsto k^{\prime \prime} \quad A \equiv B \\
(2 k+1)^{\prime} \mapsto k^{\prime} \\
(2 k+1) \mapsto k
\end{array}\right.
$$

However，$A \notin B$ benne ir $B D^{\prime}$ has a neighbour but it is isolated in A ，ie．$B \neq \varphi\left(0^{\prime}\right)$ but $\underline{A} \not \not \varphi\left(0^{\prime}\right)$ ，where $\varphi(x):=\exists_{y}\left(x E_{y}\right)$ ．
（e）Similarly，$A:=(2 \mathbb{Z},<)$ is a sabstacherre of $B:=(\mathbb{Z},<)$ such that $\underline{A} \leadsto \underline{B}$ hence $\underline{A} \equiv \underline{B}$ but $A \notin \underline{B}$ bead in B there is an ale－ $2 k \mapsto \bar{k}$ went between 0 and 2 but there isu＇t one in A ．

Now ve give a criterion/test tor a cubstrachne to be elementarg.
Tarski - Vanght test (for elementarity). For a σ-structure $\frac{B}{\varphi}$, a substruchre $\underline{A} \subseteq B$ is eleme-tary iff for every extended σ-firmula $\varphi(\vec{x}, y)$ and $\vec{a} \in A^{|\vec{z}|}$, if $\underline{B} \vDash \exists y \varphi(\vec{a}, y)$ then there is a (Tar,ki-Vaught witum) $a^{\prime} \in A$ sach that $B \vDash \varphi\left(\vec{a}, a^{\prime}\right)$.

Pcoof. \Rightarrow Suppose $\frac{A}{2} \leqslant B$ and $B \vDash \exists y \varphi(\vec{a}, y)$. B_{y} elementarit, $A \neq \exists, \varphi(\vec{a}, s)$, so there is $a^{\prime} \in A$ such that $A \notin \varphi\left(\vec{a}, a^{\prime}\right)$. By elenentaring again, $B \vDash \varphi\left(\vec{a}, a^{\prime}\right)$.
\Leftrightarrow Suppose the Tarski-Vaught wondition holds. To prove $A \subseteq B$ ne show hy induction on focmalas that tir each extencled formila $\varphi(\vec{x})$ and $\vec{a} \in A^{|\vec{x}|}$, we have $\underline{A} \in \varphi(\vec{a})$ ift $\underline{B} \vDash \varphi(\vec{a})$.
Casel. φ is atomic, i.e. ecther $t_{1}=t_{2}$ or $R\left(t_{1}, \ldots, t_{k}\right)$, for σ-teruy t_{1}, \ldots, t_{k}. Then φ is quactifier frue so $\underline{A} \vDash \varphi(\vec{a})$ ift $\underline{B} \vDash \varphi(\vec{a})$.

Case 2. $\varphi:=\neg \psi$. Then $A \in \neg \psi(\vec{a})$ iff $\underline{A} \not \not \neq \psi(\vec{a})$
(by induction) iff $\bar{B} \not \neq \psi(\vec{a})$
iff $\underline{B} \vDash \neg \psi(\vec{a})$,
Case 3, $\varphi:=\Psi_{1} \vee \Psi_{2}$. Sinitar ho Case?. $\left(\underset{\downarrow}{\Rightarrow} b_{y}\right.$ the Tarski-Vaught conclition)
Case 4. $\varphi(\vec{x})=\exists_{y} \psi(\vec{x}, y)$. Then $\underline{B} \neq 子_{y} \psi(\vec{a}, y)$ ift there is $a^{\prime} \in A$ sat. $B \vDash \psi\left(\vec{a}, a^{\prime}\right)$
(by inluction) iff there is $a^{\prime} \in A$ s.t. $A \neq \psi\left(\vec{a}, a^{\prime}\right)$ iff $\underline{A} \vDash \exists_{y} \psi(\vec{a}, y)$.

Tuns a unbstrachre is elenuntan it it cootcias a Tarski-Vangtt
withes tor each format of the dorm $7, \varphi(x), s)$. Recall hat we could define the sulstruchre yeerased ing a subset base indersectimon of sabstractires is again a substructure. This is not tine or elementary substructures:

Exangle. let $r:=\varnothing$. Let $\underline{B}:=(\mathbb{Z}), \underline{A_{-}}:=(-\mathbb{N})$ ad $\underline{A}_{+}:=(\mathbb{N})$.
Then it is easy to check $W_{t} \underline{A}_{-}, \underline{A}_{+} \propto \underline{B}$ (bs The Torski-Vayght test or l, the criterion via automorphism given in HWS) but $(-\mathbb{N}) \cap \mathbb{N}=\{0\}$ and $\underline{A}_{0}:=(\{0\})$ is not an elementary subitunctore of B bane $\underline{A} \neq \underline{B}$ since $\varphi:=\exists_{x_{1}} \nexists_{x_{2}}\left(x_{1} \neq x_{2}\right)$ holds in B hat fail) in \underline{A}_{0}.

Thus, for a given subset $S \leq B$ we can'f define "the raclest eleventarn substructure of B containing $S^{\prime \prime}$. However, we can still find a_{n} elementang schstencture $A \leq B$ containing S that has as sal as possible carclinalidy, azazel, $|A| \leqslant \max \left(\mid\left\langle S_{\Sigma_{3}}\right|, N_{0}\right)$.

Downward Löwenheim - Skolem (uses Axiom of Chic). For each σ-structure B and $S \leq B$. there is $\underline{A} \notin \underline{B}$ containing S sack ht $|A| \leq \max \left(|s|,|a|, N_{0}\right)$.

